

The Frontiers of Superstring Theory:

"D-branes" and new perspective of our world

Koji Hashimoto(橋本幸士) Theoretical Physics Labo (川合理論研)

Braneworld

"Brane"

← "membrane"

Extra dimensions

Sec.1

Why does this new picture arise?

Branes predicted by Superstring theory are expected to solve gravity problems in elementary particle theory

5 slides

Sec.2

Can we observe them?

5 slides

Sec.3

Are they useful 5 slides for other theories and sciences?

0. Need of Superstring Theory?

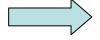
Road to the unification of all forces and matter

Present basis of physics

Quantum Mechanics
Heisenberg, Schroedinger (1925)

Standard model of elementary particle physics, Nuclear physics, Chemistry, Condensed matter physics,...

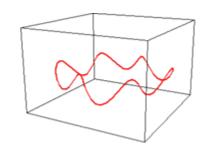
Gravity
Einstein (1914)


Big Bang Cosmology Inflation

Unify

Unified Theory: for all forces and matter

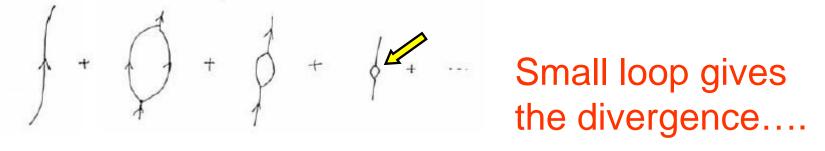
Need of Superstring theory


Naïve quantum treatment of Einstein's gravity

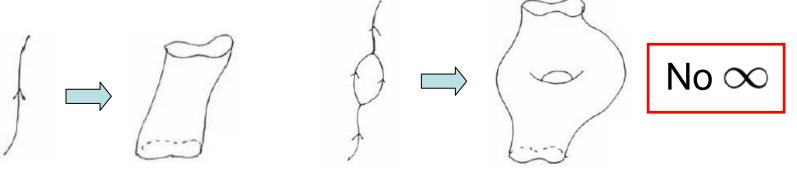
Divergence in physical quantities! (Theory is ill-defined)

Superstring Theory: no divergence!

Quantum theory including gravity, but, not a theory of particles!!!



= Candidate for the unified theory


We expect all the forces and matters are derived from the superstring theory

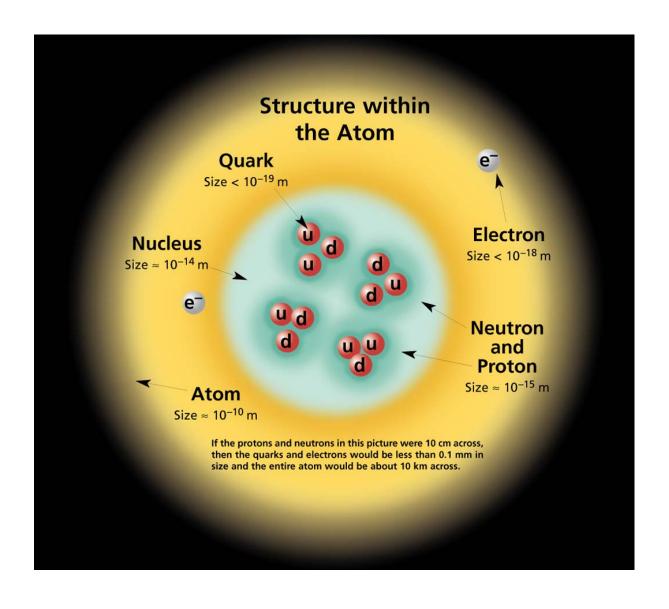
Strings cure the problem

Feynman's way of Quantum mechanics: Path integral
One needs to sum up all possible paths

In Supertring Theory ...

Interaction points are smeared

Two immediate questions


Superstrings have not been observed ... why?

In high energy experiments, the effect of quantum gravity is negligibly small

Prediction of superstring theory?

Number of Spatial dimensions is not 3

Sub-atomic structure

Standard model of elementary particles

Quarks spin = 1/2				
Flavor	Approx. Mass GeV/c ²	Electric charge		
U up	0.003	2/3		
d down	0.006	-1/3		
C charm	1.3	2/3		
S strange	0.1	-1/3		
t top	175	2/3		
b bottom	4.3	-1/3		

Leptons spin = 1/2				
Flavor	Mass GeV/c ²	Electric charge		
ν _e electron neutrino	<1×10 ⁻⁸	0		
e electron	0.000511	-1		
$ u_{\mu}^{\text{muon}}$	<0.0002	0		
μ muon	0.106	-1		
$ u_{ au}^{ au}$ tau neutrino	<0.02	0		
au tau	1.7771	-1		

Unified Fle	ctroweak	snin – 1	
Unified Electroweak spin = 1			
Name	Mass GeV/c ²	Electric charge	
γ photon	0	0	
W ⁻	80.4	-1	
W ⁺	80.4	+1	
Z^0	91.187	0	
Strong (color) spin = 1			
Name	Mass GeV/c ²	Electric charge	
g gluon	0	0	

Standard Model (SM)

- Constructed in 1970's
- Describes multi-particles in quantum manner.
- Gives interactions between particles
- Explains almost all particle physics experiments

Why is it okay without gravity?

Newton's low
$$F = G \frac{m_1 m_2}{r^2}$$

$$G = 6.67 \times 10^{-11} \text{ m}^3 \text{s}^{-2} \text{kg}^{-1}$$

Planck mass:

$$M_{pl} = \frac{1}{\sqrt{G}} = 10^{19} \text{GeV}$$

in the natural unit $c = 1, h/2\pi = 1$

Compare it with top quark mass

 $M_t \sim 175 \; {
m GeV} \quad : {
m small} \; !!!$

Why is it okay without gravity?

Effect of Quantum Gravity is so small

Superstring effect is so small

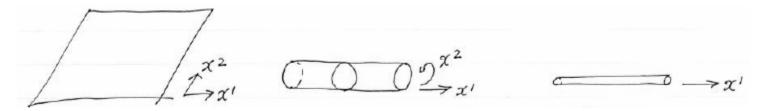
String is difficult to observe....

However, quantum theory of gravity needs superstrings!

New Question: Why is it so small?

Branes may answer this!

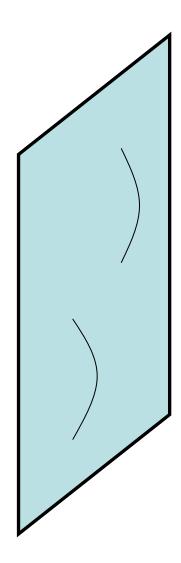
Theoretical consequence of Superstring Theory


Prediction: 10 Spacetime dimensions

Superstring + Relativity → 10 dimensions

Then where are the extra dimensions?!

Solution


Hypothesis: Compactified space

2 dim

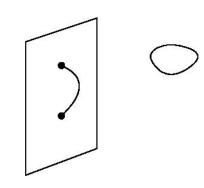
Effectively 1 dim

Another Prediction

1. Braneworld

Why Strings?

A naïve question: Why strings, not membranes?

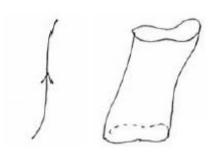

Answer: Both, at the same time!

Superstring theory inevitably introduces "branes"

D-branes = Hypersurface on which superstrings can end

"D" ← Dirichlet boundary condition

"brane" ← membrane


Theory of supertrings and branes || unified theory

Particles from superstrings

Description of a string : $X^{\mu}(t, \sigma)$

$$(\mu = 1, 2, \cdots, D-1)$$

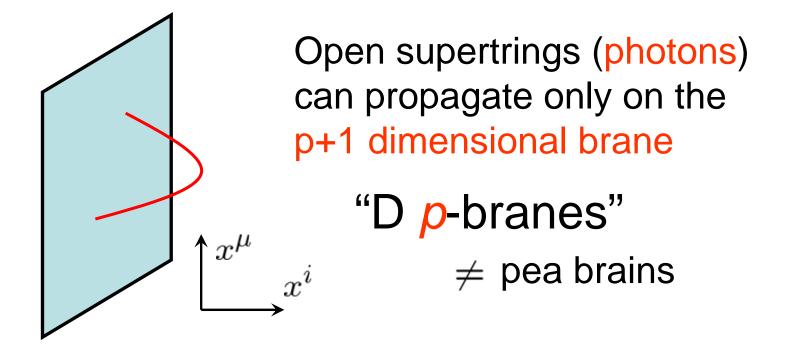
Cf) Particle : $X^{\mu}(t)$

Equation of motion of a string : $\frac{\partial^2}{\partial t^2} X^{\mu} - \frac{\partial^2}{\partial \sigma^2} X^{\mu} = 0$

Each fluctuation looks as a particle!

→ Infinite kinds of particles = a string

Flucutuation direction : $\mu = 1, 2, \dots, D-1$


 \rightarrow Photon (elemag wave) polarization $A_{\mu}(x)$

D-branes and photons

Boundary conditions for open supertrings:

Neumann:
$$\frac{\partial}{\partial \sigma} X^{\mu}(\sigma = 0) = 0 \quad (\mu = 0, 1, \dots, p)$$

Dirichlet:
$$X^{i}(\sigma = 0) = c$$
 $(i = p + 1, \dots, D - 1)$

Gravity from closed supertrings

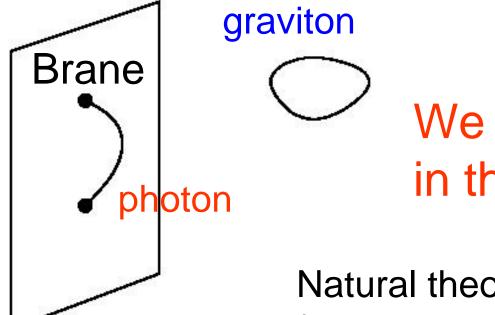
Gravity describes curved geometry

Gravitational field: $g_{\mu\nu}(x)$

Quanta = "gravitons"

Closed superstring has two oscillations:

$$\frac{\partial^2}{\partial t^2} X^{\mu} - \frac{\partial^2}{\partial \sigma^2} X^{\mu} = 0, \quad X^{\mu}(\sigma + 2\pi) = X^{\mu}(\sigma)$$


$$\rightarrow$$
 sol: $X^{\mu}(t,\sigma) = f^{\mu}(t+\sigma) + g^{\mu}(t-\sigma)$

Left- and right-movers fluctuate

 \rightarrow two-index particle \rightarrow graviton field $g_{\mu\nu}(x)$

Brane World

Open superstrings (photons): in the brane Closed superstrings (gravitons): can be away

We are living in the branes!

Natural theoretical output from superstring theory

2. Can we observe the braneworld?

Braneworld is consistent?!

Newton's low for Gravity:

$$F = \frac{1}{M_{pl}^2} \frac{m_1 m_2}{r^2} \iff V(r) = -\frac{1}{M_{pl}^2} \frac{m_1 m_2}{r}$$

In
$$D(>4)$$
 dimensions, modified
$$V(r) = -\frac{1}{M_{pl(D)}^{D-2}} \frac{m_1 m_2}{r^{D-3}}$$

Of course, this contradicts with observation in solar system

a way out: Compactified extra dimensions

Assume that extra dimensions are compactified by a circle with radius R

$$V(r) = -\frac{1}{M_{pl(D)}^{D-2}} \frac{m_1 m_2}{r^{D-3}} \qquad r \ll R$$

$$V(r) = -\frac{1}{M_{pl(D)}^{D-2}} \frac{1}{R^{D-4}} \frac{m_1 m_2}{r} \qquad r \gg R$$

If the latter is our familiar Newton's law,

$$M_{pl}^2 = M_{pl(D)}^{D-2} R^{D-4} = 10^{38} \, (\text{GeV})^2$$

Consistent, and

Resolution of the smallness problem

$$M_{pl}^2 = M_{pl(D)}^{D-2} R^{D-4} = 10^{38} \, (\text{GeV})^2$$

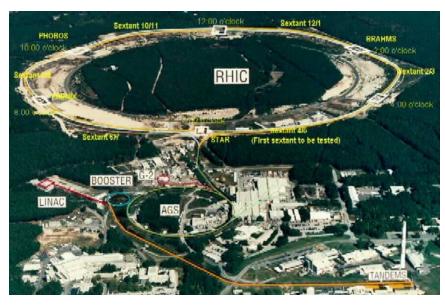
Use this for the smallness problem!

A solution : $M_{pl(D)} \sim 10^3 {
m GeV}$ Arkani-Hamed, Dimopoulos, Dvali

→ Prediction :
$$R \sim 10^{30/(D-4)-19}$$
 [m]

$$D = 5 \rightarrow R \sim 10^{11} [m]$$
 apparently rejected

$$D=6 \rightarrow R \sim 10^{-3} \text{ [m]} \dots \text{Possible!!!}$$


In fact, Newton's law has been confirmed only down to a sub-mm scale.

→ Future experiments can confirm the scenario

Experimental consequence

The energy $M_{pl(D)} \sim 10^3 {\rm GeV}$ can be reached by particle colliders!

RHIC experiment

What will happen at collisions of particles with energy $M_{pl(D)} \sim 10^3 \text{GeV}$?

Production of Blackholes at the collider!!

Argyres, Dimopoulos, March-Russell

Creation of Blackhole : Energy concentration in a region smaller than Schwarzschild radius r_s

$$r_s = Gm = m/M_{pl}^2$$

Collider energy : $m = 10^3$ [GeV]

$$M_{pl} = 10^{19} [\text{GeV}] \Rightarrow r_s = 10^{-51} [\text{m}]$$

$$M_{pl(D)} = 10^3 [\text{GeV}] \Rightarrow r_s = 10^{-19} [\text{m}]$$

Possible !!!

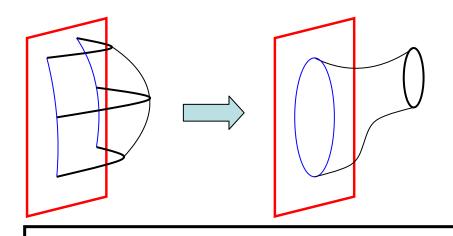
radius of nuclei
$$\gtrsim 10^{-15}$$
 [m]

3. Are branes useful for other scientific fields?

New mathematical methods born in superstring theory

Gauge/Gravity Correspondence

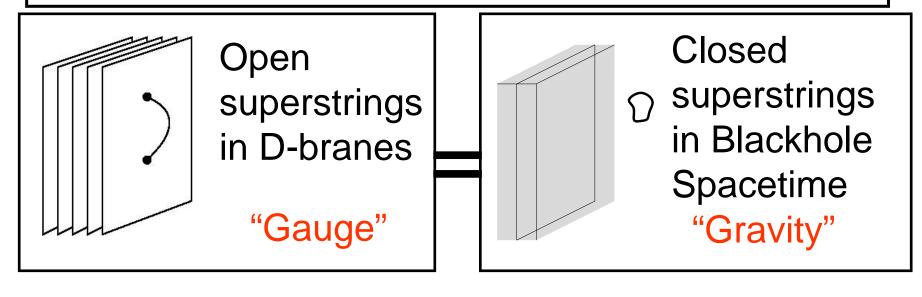
Gauge field theories (such as electromagnetism) = Gravity in higher dimensions


Application to → Nuclear physics

Brane-Engineering of Solitons -

Solitons = Dp-branes inside Dq-branes (p < q)

Application to → Condensed matter physics, Cosmology, Mathematics


Another description of D-branes

D-branes

- = sources for gravity
- → blackholes

Gauge/Gravity Correspondence

Quarks = Gravity!

Quantum Chromodynamics (theory of quarks)

Strongly coupled difficult to analyze

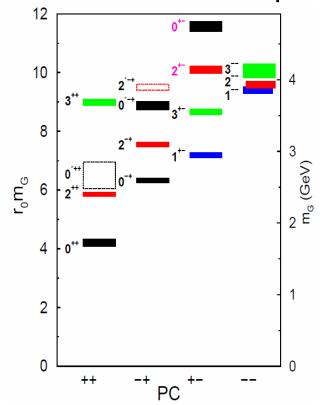
Static properties of Proton / Neutron

		Gravity Analysis	Experiments
Charge Radius ²	Р	(0.8 fm) ²	(0.88 fm) ²
	N	(0.0 fm) ²	- 0.12 fm ²
Magnetic Moment	Р	2.2	2.8
	N	- 1.3	- 1.9

input : f_{π}, m_{ρ}

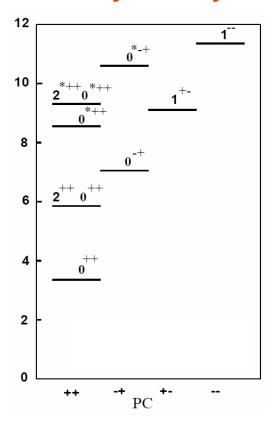
Sakai-Sugimoto-KH (2008)

Superstring theory


Quantum gravity = candidate for unified theory

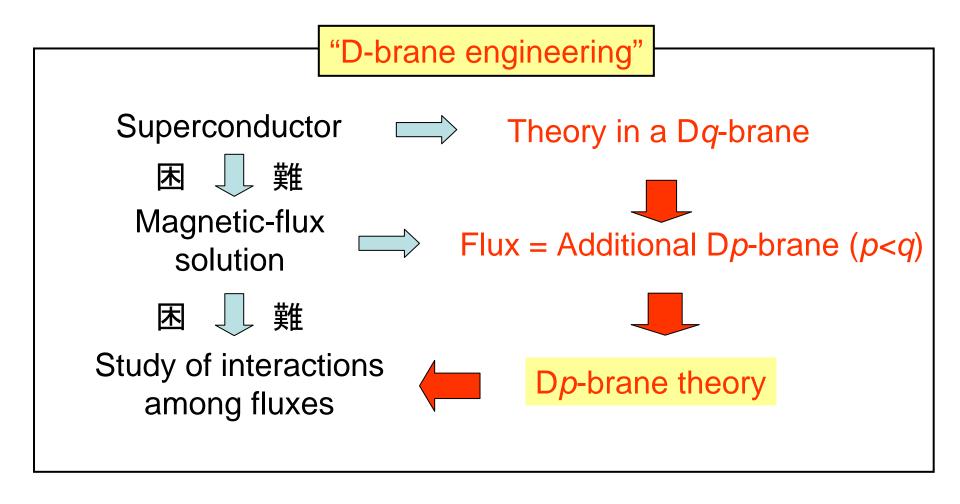
New perspective of our world! Applications to other scientific fields!

Example of Gauge/Gravity Correspondence


Quantum Chromodynamics (theory of quarks)

Numerical Simulation of Glueball boundstate spectra

(Morningstar/Peardon, 1999)


Gravity analysis

(Brower/Mathur/Tan,2003)

Reconnection of Magnetic Fluxtube

D-brane theory can be used to physics of solitons

